Market Approaches to Aggregating Predictions and Data

Bo Waggoner U. Colorado, Boulder Makerere University July 2019 Goal: acquire and aggregate information

Goal: acquire and aggregate information

- beliefs about future events or relationships
 e.g. forecasting rainfall, crop growth, sales
- data about individuals or processes

e.g. farming data, sales data

Challenges:

acquiring accurate and useful information incentives!

• **aggregating** the information accurately consider polls or surveys ... systematic bias, etc.

Outline:

- 1 Prediction markets overview
- 2 Collaborative machine learning
- 3 Markets for data

Outline:

1 Prediction markets - overview

- 2 Collaborative machine learning
- 3 Markets for data

Prediction markets: goal

Predict a future event

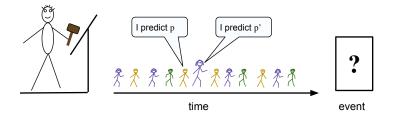
- Political election
- Sporting event
- Weather
- Economics

1 Designer chooses initial prediction p^0

- **1** Designer chooses initial prediction p^0
- **2** First participant updates it to p^1

- **1** Designer chooses initial prediction p^0
- **2** First participant updates it to p^1
- **3** Second participant updates it to p^2

- **1** Designer chooses initial prediction p^0
- **2** First participant updates it to p^1
- **3** Second participant updates it to p^2



- **1** Designer chooses initial prediction p^0
- **2** First participant updates it to p^1
- ${f 3}$ Second participant updates it to p^2
- 4
 - 5 Event occurs

- **1** Designer chooses initial prediction p^0
- **2** First participant updates it to p^1
- ${f 3}$ Second participant updates it to p^2
- 5 Event occurs

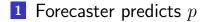
4

6 Designer pays participants

- **1** Designer chooses initial prediction p^0
- **2** First participant updates it to p^1
- ${f 3}$ Second participant updates it to p^2
- **5** Event occurs

4

6 Designer pays participants How?



- **1** Forecaster predicts p
- **2** Event *y* occurs

- **1** Forecaster predicts p
- **2** Event *y* occurs
- 3 Payoff S(p, y)

- **1** Forecaster predicts p
- **2** Event *y* occurs
- 3 Payoff S(p, y)
- 4 S is **proper** if truthfulness maximizes expected score

First step: incentivize single forecaster

- **1** Forecaster predicts p
- **2** Event *y* occurs
- 3 Payoff S(p, y)

4 S is **proper** if truthfulness maximizes expected score

Examples: $S(p, y) = \log p(y)$

First step: incentivize single forecaster

- **1** Forecaster predicts p
- **2** Event *y* occurs
- 3 Payoff S(p, y)

4 S is **proper** if truthfulness maximizes expected score

Examples: $S(p, y) = \log p(y)$, $S(p, y) = ||p - \delta_y||_2^2$ $\delta_y = indicator vector for y, i.e. (0, ..., 1, ..., 0).$

Scoring rule based market¹

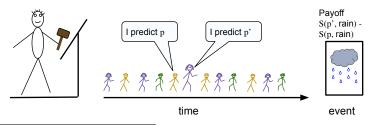
- **1** Designer chooses initial prediction p^0
- **2** First participant updates it to p^1
- **3** Second participant updates it to p^2
- 4
- **5** Event *y* occurs

Scoring rule based market¹

- 1 Designer chooses initial prediction p^0
- **2** First participant updates it to p^1
- **3** Second participant updates it to p^2
- **5** Event *y* occurs

4

6 Participant t receives $S(p^t, y) - S(p^{t-1}, y)$



¹[Hanson 2003]

■ Each person only participates once ⇒ truthful otherwise, complicated ... e.g. [Chen, W. 2016]

- Each person only participates once ⇒ truthful otherwise, complicated ... e.g. [Chen, W. 2016]
- In equilibrium, converges* to optimal accuracy * e.g. [Ostrovsky 2013]

- Each person only participates once ⇒ truthful otherwise, complicated ... e.g. [Chen, W. 2016]
- In equilibrium, converges* to optimal accuracy * e.g. [Ostrovsky 2013]
- Can be rephrased as a financial market [Hanson 2003, ..., Abernethy, Chen, Wortman-Vaughan 2013]

- Each person only participates once ⇒ truthful otherwise, complicated ... e.g. [Chen, W. 2016]
- In equilibrium, converges* to optimal accuracy * e.g. [Ostrovsky 2013]
- Can be rephrased as a financial market [Hanson 2003, ..., Abernethy, Chen, Wortman-Vaughan 2013]
- Extends to expectations of random variables...
 e.g. [ACW13]

- Each person only participates once ⇒ truthful otherwise, complicated ... e.g. [Chen, W. 2016]
- In equilibrium, converges* to optimal accuracy * e.g. [Ostrovsky 2013]
- Can be rephrased as a financial market [Hanson 2003, ..., Abernethy, Chen, Wortman-Vaughan 2013]
- Extends to expectations of random variables...
 e.g. [ACW13]
- …and beyond!?

Coming up: machine learning connection

Recap so far

Scoring-rule based markets (SRMs) for predicting **future events**

- Collaboratively maintain a single estimate/prediction
- Participants propose updates
- Reward is **improvement in score**
- Better predictions \implies higher rewards

Outline:

- 1 Prediction markets overview
- 2 Collaborative machine learning
- 3 Markets for data

Goal: predict expectation of random variable

Goal: predict expectation of random variable **Need:** "proper scoring rule" for the mean

Goal: predict expectation of random variable **Need:** "proper scoring rule" for the mean

Question: minimizing which loss gives the mean?

 $\arg\min_{r} \mathop{\mathbb{E}}_{y \sim p} \ell(r, y)$

Goal: predict expectation of random variable **Need:** "proper scoring rule" for the mean

Question: minimizing which loss gives the mean?

$$\arg\min_{r} \mathop{\mathbb{E}}_{y \sim p} \ell(r, y)$$

Example: Squared loss, $\ell(r, y) = (r - y)^2$ For vectors: $||r - y||_2^2$; there are others

Prediction market for expectations

Example: expected cm of rain next month

- **1** Designer chooses initial estimate r^0
- 2 First participant updates it to r^1
- **3** Second participant updates it to r^2
- 4
- **5** Event *y* occurs

e.g. total rainfall measured

6 Participant t receives $\ell(r^{t-1}, y) - \ell(r^t, y)$ where $\ell(r, y) = (r - y)^2$

Other kinds of predictions

Can extend to any *elicitable* statistic...

[Lambert, Pennock, Shoham 2008; Abernethy, Frongillo 2011]

- Median |r-y|Mode $\mathbb{1}[r=y]$
 - **.**..

Other kinds of predictions

Can extend to any *elicitable* statistic...

[Lambert, Pennock, Shoham 2008; Abernethy, Frongillo 2011]

- Median |r-y|Mode $\mathbb{1}[r=y]$
- • •

...though financial market properties may not extend [Frongillo, W. 2018]

Key idea from [Abernethy, Frongillo 2011]: use a test dataset instead of the future event!

Example: classifier to predict sun or rain based on data

- **1** Designer chooses initial **classifier** h^0
- **2** First participant updates it to h^1
- 3 ...

Example: classifier to predict sun or rain based on data

- **1** Designer chooses initial **classifier** h^0
- **2** First participant updates it to h^1
- 3
- **4** Designer picks test dataset

e.g. random historical days

Example: classifier to predict sun or rain based on data

- **1** Designer chooses initial **classifier** h^0
- **2** First participant updates it to h^1
- 3
- 4 Designer picks test dataset

 e.g. random historical days

 5 Participant t receives ℓ(h^{t-1}; D) − ℓ(h^t; D)
 where ℓ(h; D) is average loss on dataset

Structured as kaggle-like contest, but...

Structured as kaggle-like contest, but...

collaborative rather than competitive

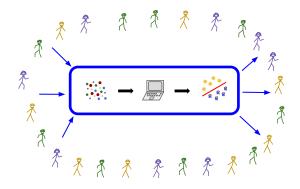
Structured as kaggle-like contest, but...

- collaborative rather than competitive
- split rewards rather than winner-take-all

Structured as kaggle-like contest, but...

- collaborative rather than competitive
- split rewards rather than winner-take-all

incentive-aligned does not encourage wild guesses



Outline:

- 1 Prediction markets overview
- 2 Collaborative machine learning
- **3** Markets for data

Markets for data

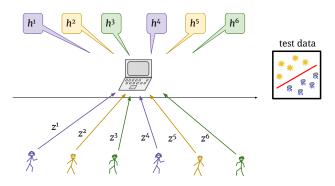
[Waggoner, Frongillo, Abernethy 2015]

Idea: instead of updating the model directly...

Markets for data

[Waggoner, Frongillo, Abernethy 2015]

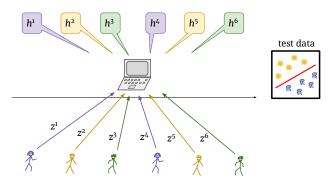
Idea: instead of updating the model directly... people **provide data**, and we compute the updates!



Markets for data

Key points:

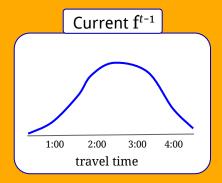
- Reward for data = improvement in loss
- Incentive-aligned: better data = better payoff
- Fake data is ok!

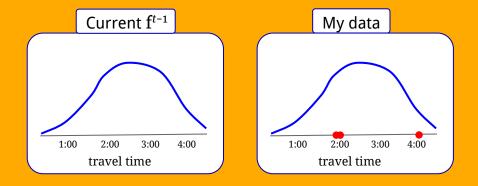


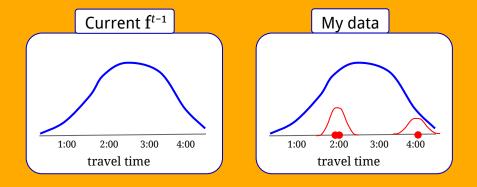
[Waggoner, Frongillo, Abernethy 2015]

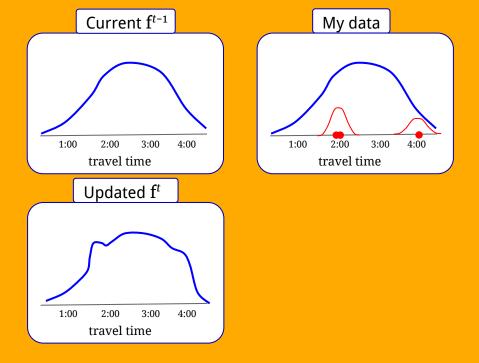
If hypotheses lie in an RKHS (use kernels):

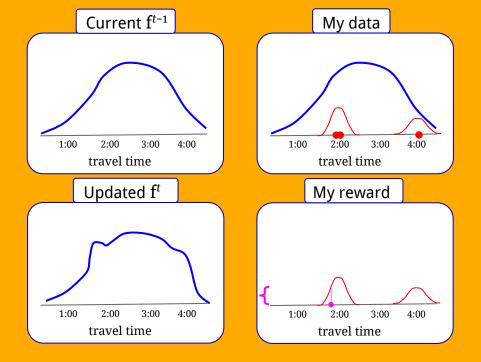
- Can provide differential privacy for data
- Can still phrase as a market with securities not generally true: [Frongillo, Waggoner 2018]











[Harris, Waggoner, IEEE Blockchain 2019]

1 Initialize ML model in a smart contract

- **1** Initialize ML model in a smart contract
- 2 Participants arrive, provide data

- **1** Initialize ML model in a smart contract
- 2 Participants arrive, provide data
- **3** Model automatically updates

- **1** Initialize ML model in a smart contract
- 2 Participants arrive, provide data
- 3 Model automatically updates
- 4 Model is free and open for all to use

[Harris, Waggoner, IEEE Blockchain 2019]

- **1** Initialize ML model in a smart contract
- 2 Participants arrive, provide data
- 3 Model automatically updates
- 4 Model is free and open for all to use
- 5 Can use prediction-market reward structure

Implementation on the Ethereum blockchain: https://github.com/microsoft/0xDeCA10B

Recap and applications

Using a prediction market structure:

- incentivizes providing good data or predictions
- aggregates into a single, collaborative ML model
 Possible applications: farming, maps, personal assistants, recommendations, ...

Future work

- Implement and deploy these mechanisms! work with domain experts
- Decrease risk

currently: participants may lose money

- Other reward mechanisms?
- Generally: marketplaces for data

Thanks to my collaborators: Raf Frongillo (U. Colorado), Yiling Chen (Harvard), Jake Abernethy (Georgia Tech), Justin Harris (Microsoft Research).

Future work

- Implement and deploy these mechanisms! work with domain experts
- Decrease risk

currently: participants may lose money

- Other reward mechanisms?
- Generally: marketplaces for data

Thanks to my collaborators: Raf Frongillo (U. Colorado), Yiling Chen (Harvard), Jake Abernethy (Georgia Tech), Justin Harris (Microsoft Research). **Thank you!**